Cardinal functions on compact F-spaces and on weakly countably complete Boolean algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Countably Closed Complete Boolean Algebras

It is unprovable that every complete subalgebra of a countably closed complete Boolean algebra is countably closed. Introduction. A partially ordered set (P,<) is σ-closed if every countable chain in P has a lower bound. A complete Boolean algebra B is countably closed if (B, <) has a dense subset that is σ-closed. In [2] the first author introduced a weaker condition for Boolean algebras, game...

متن کامل

More on Cardinal Invariants of Boolean Algebras

We address several questions of Donald Monk related to irredundance and spread of Boolean algebras, gaining both some ZFC knowledge and consistency results. We show in ZFC that irr(B0 × B1) = max{irr(B0), irr(B1)}. We prove consistency of the statement “there is a Boolean algebra B such that irr(B) < s(B ~ B)” and we force a superatomic Boolean algebra B∗ such that s(B∗) = inc(B∗) = κ, irr(B∗) ...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Countably I-compact Spaces

We introduce the class of countably I-compact spaces as a proper subclass of countably S-closed spaces. A topological space (X,T) is called countably I-compact if every countable cover of X by regular closed subsets contains a finite subfamily whose interiors cover X. It is shown that a space is countably I-compact if and only if it is extremally disconnected and countably S-closed. Other chara...

متن کامل

On incomparability and related cardinal functions on ultraproducts of Boolean algebras

Let C denote any of the following cardinal characteristics of Boolean algebras: incomparability, spread, character, π-character, hereditary Lindelöf number, hereditary density. It is shown to be consistent that there exists a sequence 〈Bi : i < κ〉 of Boolean algebras and an ultrafilter D on κ such that

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1981

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-114-3-235-256